Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up

Lightweight Block Cipher Design

Gregor Leander

HGI, Ruhr University Bochum, Germany

Croatia 2014

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Outline					

5 Lightweight: 2nd Generation

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Outline					

- 2 Industry
- 3 Academia
- 4 A Critical View
- 5 Lightweight: 2nd Generation

 Motivation
 Industry
 Academia
 A Critical View ooo
 Lightweight: 2nd Generation
 Wrap-Up

 Upcoming IT-Landscape
 Very State
 Very State</td

Figure: Upcoming IT-Landscape

Motivation Industry Academia A Critical View Lightweight: 2nd Generation Wrap-Up

More Precisely: RFID-Tags

RFID Tag

RFID=Radio-Frequency IDentification

ification Horst Görz Institute for IT-Security

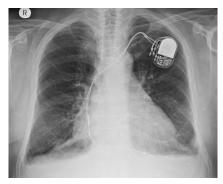
Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Examp	le I				

Quelle: Bundesministerium des Innern

Electronic Passports

Horst Gört: Institute for IT-Security

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Exampl	e II				



Logistics

◆□> ◆□> ◆注> ◆注> □注□ →

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Exampl	le III				

Pacemaker implants

Horst Görtz Institute for IT-Security

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Securit	У				

Question

Do we want this?

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Securit	у				

Question

Do we want this?

If we want it, we want it secure!

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Attacks	1				

Iron attacks in Russia

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Attacks	s II				

Fear: Terrorist attacks on pacemaker

What is (not) Lightweight Cryptography

- Cryptography tailored to (extremely) constrained devices
- Not intended for everything
- Not intended for extremely strong adversaries
- Not weak cryptography

1. Sector sector					
Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up

Lightweight Cryptography

Question

What about standard algorithms?

- AES is great for almost everywhere
- Mainly designed for software
- It is too expensive for very small devices
- It protects data stronger than needed

Horst Görz. Institute for IT-Security
 Motivation
 Industry
 Academia
 A Critical View
 Lightweight: 2nd Generation
 Wrap-Up

AES: The Swiss Army Knife

Domain Specific Cipher

On specific platforms/for specific criteria one can do better.

for IT-Security

(日)

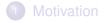
Lightweight Cryptography: Industry vs. Academia

Industry

Non-existence of lightweight block ciphers a real problem since the 90's.

- Many proprietary solutions
- Often: not very good.

Academia


Research on Lightweight block ciphers started only recently.

for IT-Security

・ロット 御マ キョマ キョン

- Several good proposals available.
- Developed a bit away from industry demands.

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Outline					

- 3 Academia
- 4 A Critical View
- 5 Lightweight: 2nd Generation

Lightweight Ciphers in Real Life

Example (Algorithms Used In Real Products)

- Keeloq
- MIFARE
- DECT
- Kindle Cipher

What they have in common:

- efficient
- proprietary/not public
- non standard designs
- not good
- A lot more out there...

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Keeloq					

Keeloq

A 32 bit block-cipher with a 64 bit key.

- Developed by Gideon Kuhn (around 1985).
- Sold for 10M\$ to Microchip Technology Inc (1995).
- Algorithm for remote door openers: Cars, Garage, ...
- Used by: Chrysler, Daewoo, Fiat, GM, Honda, Toyota, Volvo, Volkswagen Group,...

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
KeeL	oq				
	Sebastiaan Inde ¹ Department of Leuve {sebastiaan. ² Einstein Insti	esteege ^{1,***} , Na ar Electrical Engine en. Kasteelpark A indesteege,orr. itute of Mathema nkell puter Science Dep	nd Bart Preneel ¹ eering ESAT/SCD-C Arenberg 10, B-3001 I	r Dunkelman ¹ , Eli Biham ³ , OSIC, Katholieke Universiteit Heverlee, Belgium. eneel}@esat.kuleuven.be sity. Jerusalem 91904, Israel. 1 Haifa 32000, Israel.	

Abstract. KeeLoq is a lightweight block cipher with a 32-bit block size and a 64-bit key. Despite its short key size, it is widely used in remote keyless entry systems and other wireless authentication applications. For example, authentication protocols based on KeeLoq are supposedly used by various car manufacturers in anti-theft mechanisms. This paper presents a practical key recovery attack against KeeLoq that requires 2¹⁶ known

Horst Görtz Institute

A D > A B > A B > A B >

EUROCRYPT 2008

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
MIFAR	RE				

MIFARE Cipher

A stream cipher with an 48 bit key.

- widely used in contactless smart cards
- billions of smart card chips
- electronic bus and train tickets

Horst Görtz Institute for IT-Security

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
MIFAR	E Ciphe	ər			

A Practical Attack on the MIFARE Classic

Gerhard de Koning Gans, Jaap-Henk Hoepman, and Flavio D. Garcia

Institute for Computing and Information Sciences Radboud University Nijmegen P.O. Box 9010, 6500 GL Nijmegen, The Netherlands gkoningg@sci.ru.nl, jhh@cs.ru.nl, flaviog@cs.ru.nl

Abstract. The MIFARE Classic is the most widely used contactless smart card in the market. Its design and implementation details are kept secret by its manufacturer. This paper studies the architecture of the card and the communication protocol between card and reader. Then it gives a practical, low-cost, attack that recovers secret information from the memory of the card.

Horst Görtz Institute

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CARDIS 2008

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
DECT					

DECT Cipher

A stream cipher with an 64 bit key.

- cordless home telephones
- 30.000.000 base station in Germany
- also baby phones, traffic lights, etc

hgi Horst Görtz Institute for IT-Security イロンイクシィミンイミン ミックへで

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up				
DECT Cipher									
	ndard Cipher								
	Karsten	Nohl ¹ and Erik	Tews ² and Ralf-Ph	ilipp Weinmann ³					

¹ University of Virginia, ² Technische Universität Darmstadt, ³ University of Luxembourg nohl@cs.virginia.edu, e_tews@cdc.informatik.tu-darmstadt.de, ralf-philipp.weinmann@uni.lu

Abstract. The DECT Standard Cipher (DSC) is a proprietary 64-bit stream cipher based on irregularly clocked LFSRs and a non-linear output combiner. The cipher is meant to provide confidentiality for cordless telephony. This paper illustrates how the DSC was reverse-engineered from a hardware implementation using custom firmware and information on the structure of the cipher gathered from a patent. Beyond disclosing the DSC, the paper proposes a practical attack against DSC that recovers the secret key from 2¹⁵ keystreams on a standard PC with a success rate of

Horst Görtz Institute

э.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Kindle					

Kindle Cipher (PC1)

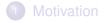
A stream cipher with an 128 bit key.

- Amazons Kindle ebook
- DRM system

Cryptanalysis of the "Kindle" Cipher

Alex Biryukov, Gaëtan Leurent, Arnab Roy

University of Luxembourg alex.biryukov@uni.lu, gaetan.leurent@uni.lu, arnab.roy@uni.lu


Abstract. In this paper we study a 128-bit-key cipher called PC1 which is used for the DRM system of the Amazon Kindle e-book reader. This is the first academic cryptanalysis of this cipher and it shows that PC1 is a very weak stream cipher, and can be practically broken in a knownplaintext and even in a ciphertext-only scenario.

Horst Görtz Institute

ж.

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Outline					

5 Lightweight: 2nd Generation

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Why?					

Question

Why do they do that?

We need

- secure
- well analyzed
- public

ciphers for highly resource constrained devices.

Horst Görz Institute for IT-Security
 Motivation
 Industry
 Academia
 A Critical View ooo
 Lightweight: 2nd Generation
 Wrap-Up

 General Design Philosophy
 Vertical View
 Vertica

Guidelines/Goals

- Efficiency: Here mainly area
- Simplicity
- Security

 Motivation
 Industry
 Academia
 A Critical View ooo
 Lightweight: 2nd Generation
 Wrap-Up

 Design Considerations: Hardware

Hardware

What do things cost in hardware?

Suggestion

Make it an interdisciplinary project!

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Cost C	Overviev	v			

Question

What should/should not be used?

Rule of Thumb:

- NOT: 0.5 GE
- NOR: 1 GE
- AND: 1.33 GE
- OR: 1.33
- XOR: 2.67

Registers/Flipflops: 6 - 12 GE per bit!

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Desigr	n Decisi	ons I			

Horst Görtz

(日)

Question

Block size/ Key size?

Storage (FF) is expensive in hardware.

- Block size of 128 is too much.
- We do not have to keep things secret forever.

Decision

Relative Small Block Size: 32,48 or 64 Key size: 80 bit often enough

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Block	Cipher	Parts			

SP-Network

We have to design

- Non-linear-Layer
- Linear-Layer
- Key-scheduling

Here we focus on the Non-linear-Layer and the Linear-Layer.

Horst Görtz Institute for IT-Socurity

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Desiar	n Issues	5			

Design Issues

The S-Layer has to maximize nonlinearity. It has to be cheap.

The S-Layer consist of a number of Sboxes executed in parallel

$$S_i: \mathbb{F}_2^b \to \mathbb{F}_2^b$$

In hardware realized as Boolean functions.

Horst Görtz Institute for IT-Security

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Desigr	n Issues	;			

Question

Different Sboxes vs. all Sboxes the same?

A serialized implementation becomes smaller if all Sboxes are the same.

Decision

Only one Sbox.

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up			
Design Issues								

Question

What size of Sbox?

In general: The bigger the Sbox the more expensive it is in hardware.

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Sbox (Costs				

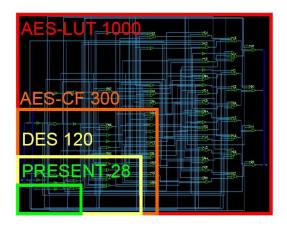


Figure: Comparison of Sboxes

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
P-Laye	r				

Design Issues

The P-Layer has to maximize diffusion. It has to be cheap.

Many modern ciphers: MDS codes (great diffusion!)

Horst Görtz Institute

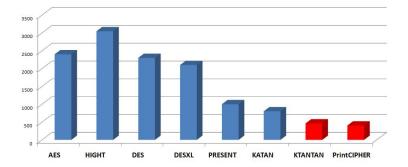
・ロット (雪) (日) (日)

• DES: Bit permutation (no cost!)

Design Decision

- Use less diffusion per round
- Use more rounds

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Examp	les				


Modern Lightweight block ciphers

- SEA
- DESL
- PRESENT
- KATAN/ KTANTAN
- HIGHT
- PrintCIPHER

A lot more out there...

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
A com	parison	: (To be t	aken with	care)	

- A fair comparison is difficult
 - Many dimensions
 - Depends on the technology

First Example: PRESENT

PRESENT (CHES 2007)

A 64 bit block cipher with 80/128 bit key and 31 rounds.

Developed by RUB/DTU/ORANGE

- SP-network
- 4 bit Sbox
- Bit permutation as P-layer

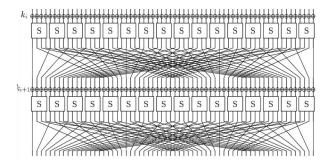


Figure: Overview of PRESENT

Second Example: KATAN

KATAN (CHES 2009)

A 32/48/64 bit block cipher with 80 bit key and 254 rounds.

Developed by KUL

- A (kind of) Feistel-cipher
- Highly unbalanced
- Inspired by Trivium
- Very simple non-linear function

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
KATAN	I: Overv	/iew			

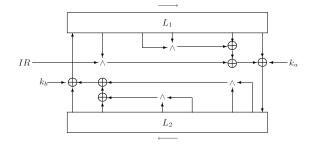
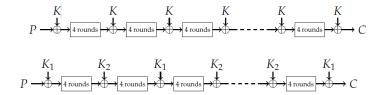


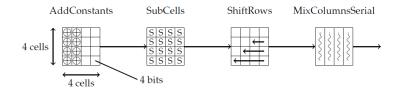
Figure: Overview of KATAN

Third Example: LED


LED (CHES 2011)

A 64 bit block cipher with 64 - 128 bit key and 32/48 rounds.

Developed by NTU and Orange Labs

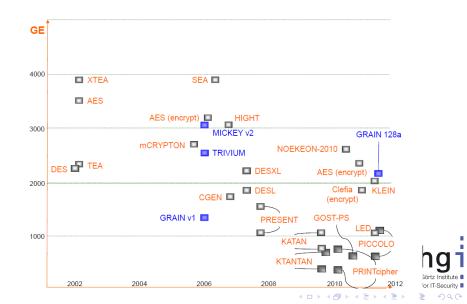

- A SP-network
- Inspired by AES
- Nice tweak to Mix Columns

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
I ED· (Overviev	N /			

Very AES inspired:

Nice Trick – Hardware friendly MDS Matrix:

$$(B)^{4} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 4 & 1 & 2 & 2 \end{pmatrix}^{4} = \begin{pmatrix} 4 & 1 & 2 & 2 \\ 8 & 6 & 5 & 6 \\ B & E & A & 9 \\ 2 & 2 & F & B \end{pmatrix}$$


Horst Görtz Institute

(日)

Very hardware friendly (but slower).

Motivation Industry Academia A Critical View Lightweight: 2nd Generation Wrap-Up

Overview: As Time Goes By

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Outline					

5 Lightweight: 2nd Generation

Motivation Industry Academia A Critical View Lightweight: 2nd Generation Wrap-Up

How Far Can You Go?

Memory

Given a block-size and a key-size the (minimal) memory requirements are fixed.

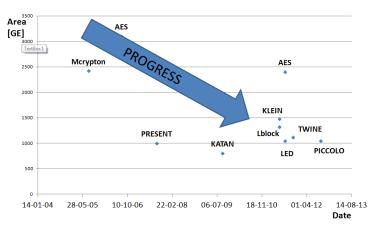
・ロット (雪) (日) (日)

Focus on Area

Minimize the overhead to this.

- PRESENT: 80 percent memory
- KATAN: \approx 90 percent memory

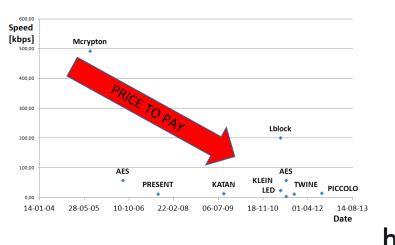
Even doing nothing is not a lot cheaper!


Even doing nothing is not a lot cheaper!

Good or Bad?

- In terms of area: Good
- In terms of energy: Bad

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Progre	ess				



Horst Görtz Institute

・ロト ・聞ト ・ヨト ・ヨト

Design Date vs. Area

Horst Görtz Institute

A D > A P > A D > A D >

Design Date vs. Speed

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
A Criti	cal Viev	v (III)			

Area Only

There seem only a few scenarios where the only criteria is area

For those good examples are available.

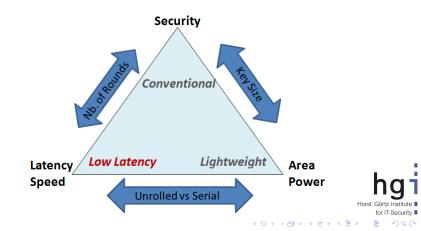
Time To Move On

Focus on other criteria!

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Outline					

- Industry
- 3 Academia
- A Critical View
- 5 Lightweight: 2nd Generation

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up


Time To Move On

Focus on other criteria!

- Examples:
 - Latency
 - Side-channel

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Latenc	сy				
Late	ncy				
Time	e to encry	ot one block	٢		

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Latenc	у				

Low-Latency Encryption – Is "Lightweight = Light + Wait"?*

Miroslav Knežević, Ventzislav Nikov, and Peter Rombouts

NXP Semiconductors, Leuven, Belgium

Abstract. The processing time required by a cryptographic primitive implemented in hardware is an important metric for its performance but it has not received much attention in recent publications on lightweight cryptography. Nevertheless, there are important applications for cost effective low-latency encryption. As the first step in the field, this paper

Horst Görtz Institute

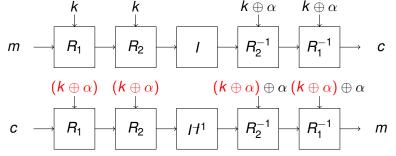
3

・ 日 ・ ・ 雪 ・ ・ 目 ・ ・ 日 ・

CHES 2012

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
PRINC	CE .				

PRINCE (ASIACRYPT'12)


A block cipher optimized for low-latency (Designed by DTU, RUB, and NXP) $% \left({\left({{\rm{D}}_{\rm{A}}} \right)_{\rm{A}}} \right)$

More precisely:

- one single clock cycle
- low latency \Rightarrow high clock rates
- moderate hardware costs
- encryption and decryption with low overhead.

Enc vs. Dec

Decryption is Encryption with a different key!

$$E_k^{-1}(m) = E_{k \oplus \alpha}(m)$$

 $\alpha = 0xc0ac29b7c97c50dd$

nstitute 🔳 ecurity 📕

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up		
0.1.							

Side-Channel Resistance

Side-Channel Resistance

Without protection having a strong cipher is useless

Therefore: Masking necessary

Usual Approach

- Design a cipher
- 2 Try to mask it efficiently

Motivation Industry Academia A Critical View Lightweight: 2nd Generation Wrap-Up

Side-Channel Resistance by Design

Usual Approach

Design a cipher

Try to mask it efficiently

Better

Design ciphers that are easy to mask

First approach already in 2000: NOEKEON

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up

FSE 2014: LS-Designs

A familiy of easy to mask block ciphers

Designed by UC-Louvain and INRIA

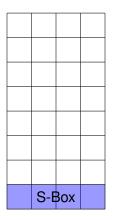
Main idea

Opposite approach of what is done usually:

- Use tables for the linear-layer
- Use (few) logical operations for S-boxes

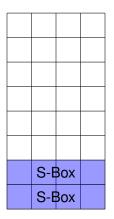
Two instances:

- Robin
- Fantomas

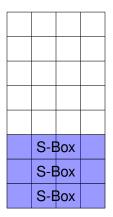

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
LS-De	signs: S	Structure			

- One box is a bit
- Registers correspond to columns

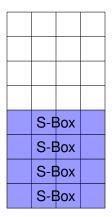
Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
LS-De	signs: S	Structure			


- One box is a bit
- Registers correspond to columns

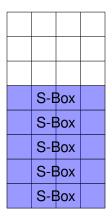
Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
LS-De	signs: S	Structure			


- One box is a bit
- Registers correspond to columns

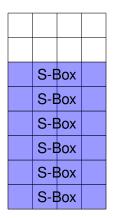
Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
LS-De	signs: S	Structure			


- One box is a bit
- Registers correspond to columns

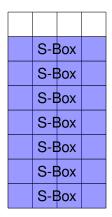
Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
LS-De	signs: S	Structure			


- One box is a bit
- Registers correspond to columns

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
LS-De	signs: S	Structure			


- One box is a bit
- Registers correspond to columns

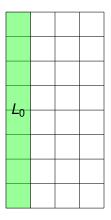
Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
LS-De	signs: S	Structure			


- One box is a bit
- Registers correspond to columns

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
LS-De	signs: S	Structure			

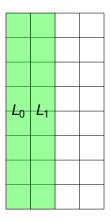
- One box is a bit
- Registers correspond to columns

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
LS-De	signs: S	Structure			

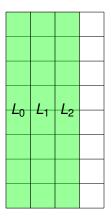

- One box is a bit
- Registers correspond to columns

S-E	Box	

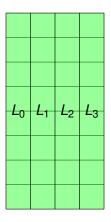
Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
LS-De	signs: S	Structure			


- One box is a bit
- Registers correspond to columns

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
LS-De	signs: S	Structure			


- One box is a bit
- Registers correspond to columns

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
LS-De	signs: S	Structure			


- One box is a bit
- Registers correspond to columns

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
LS-De	signs: S	Structure			

- One box is a bit
- Registers correspond to columns

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Outline					

- 2 Industry
- 3 Academia
- 4 A Critical View
- 5 Lightweight: 2nd Generation

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
Conclu	usion				

Lightweight Block Ciphers

An interesting research area

- Interesting problems
- Innovative designs
- New insights

Besides Practical Relevance

Better understanding of block ciphers in general.

Horst Görtz

(日)

Motivation	Industry	Academia	A Critical View	Lightweight: 2nd Generation	Wrap-Up
The E	nd				

Thank you

